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Direct numerical simulation (DNS) is used to investigate turbulent Taylor–Couette
(TC) flow. A simulation was run for a Reynolds number of 3200 in an apparatus with
a radius ratio of η = 0.617 and an aspect ratio of 4.58, which assumed a vortex pair
wavelength of 2.29. Results reported include the mean velocity, velocity fluctuation
intensities, Reynolds stress budgets, and visualizations of the instantaneous velocity
fluctuation field. Secondary near-wall vortex pairs are observed near to the cylinder
in addition to the Taylor vortex (TV) motion. Weaker evidence of secondary vortices
is found at the outer cylinder where a banded structure has been identified. The
azimuthal wall shear stress component shows large peaks and valleys at stagnation
points on the surface of both cylinders where flow from neighbouring vortices impacts
on the respective wall. These stagnation points correspond to locations where the
secondary vortices have been identified. The effect of the mean TV motion is reflected
in the Reynolds stress budgets which are similar to but more complex than those of
two-dimensional boundary layers. Visualization of the turbulent velocity fluctuations
reveals near-wall streaks at the inner cylinder.

1. Introduction
Laminar and turbulent flow in the Taylor–Couette (TC) apparatus are of interest

for many practical and theoretical purposes. The apparatus consists of two concentric
cylinders, where the rotation of one or both of the cylinders results in fluid motion. In
this paper, rotation of the inner cylinder alone is considered. Significant interest in TC
flow first arose when an initial transition from laminar Couette flow to a laminar flow
state that consists of pairs of counter-rotating vortices was predicted mathematically
and verified experimentally (Taylor 1923). This motion is commonly referred to as a
Taylor vortex (TV) motion. When the rotation rate of the inner cylinder is increased
further, even more laminar flow states are identified. Many of these laminar flow
states, or at least their initial transition, can be predicted theoretically. For this
reason, laminar TC flow has attracted wide interest (Tagg 1994).

From a practical perspective, the TC apparatus is a good representation of several
devices. Examples include, rotating machinery such as journal bearings, rotating
cylinders for corrosion research (Gabe 1974; Gabe & Walsh 1983; Gabe et al. 1998),
viscosity measurement devices, and biological applications (Haut et al. 2003). The
fluid flow is generally turbulent in these applications. A characteristic of turbulent
flow in the TC apparatus is the presence of a mean TV motion that is very similar
to the TV motion for laminar flow. In turbulent flow, however, the vortex boundaries
and the flow generally are irregular in an instantaneous sense. However, the mean TV
motion does remain stationary in the axial direction. Visual evidence of a TV motion
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in turbulent TC flow has been reported in several studies (Coles 1965; Fenstermacher,
Swinney & Gollub 1979; Andereck, Liu & Swinney 1986; Parker & Merati 1996).
The TV motion is present just beyond the onset of turbulence and it typically remains
visible up to very large Reynolds numbers. However, as the Reynolds number is
increased, the small-scale motion becomes more dominant until eventually the visual
structure of the vortex motion is diffused by the increasing turbulence intensity
(Barcilon & Brindley 1984).

Despite the practical significance of turbulent TC flow, only a small number of
experimental and numerical investigations have been carried out. There are relatively
few quantitative investigations of turbulence statistics and the effect of the TC motion
on these results. Also, visualization studies have been hampered by the curved surfaces
of the device causing light to be refracted. We review previous work, and then analyse
the results from a direct numerical simulation (DNS) of turbulent TC flow. With
DNS, the governing equations of fluid motion are solved with a grid and time step
small enough to resolve turbulent motion down to the dissipative length scales. It is
an ideal technique for the present study because turbulence models are not required,
and therefore it provides an accurate description of the physics contained in the
Navier–Stokes equations (Moin & Mahesh 1998). Our results will lead to a greater
understanding of turbulent TC flow and the effects of the TV motion, which will
contribute to an improved understanding of the function of engineering applications
of TC flow devices.

2. Previous work
While TC flow cases with both cylinders rotating are of interest, the present review

and work are restricted to a case where only the inner cylinder rotates. Other reviews
should be referred to for an account of cases with both cylinders rotating (e.g.
Andereck et al. 1986).

The geometric parameters of the TC apparatus (figure 1) are the ratio of inner to
outer cylinder radius η,

η =
R1

R2

, (2.1)

and the ratio of cylinder length (Lx) to gap width between the cylinders (aspect ratio
Γ ),

Γ =
Lx

(R2 − R1)
. (2.2)

TC flow is characterized by the geometric parameters of the device, the tangential
velocity of the inner cylinder (W1) and the kinematic viscosity (ν). These parameters
are combined to form dimensionless groups that characterize the flow, namely the
Reynolds number Re1,

Re1 =
W1(R2 − R1)

ν
, (2.3)

and the Taylor number T a,

T a1 = 4Re2
1

(
1 − η

1 + η

)
. (2.4)

The definitions of Reynolds and Taylor numbers vary in the literature and the
definitions given in (2.3) and (2.4) reflect what is used in the present work. The



Direct numerical simulation of turbulent Taylor–Couette flow 229

x* = 2.0

1.5

1.0

0.5

0

y

z

R1

x

r* = 0
r* = 1

R2

W1

Figure 1. The TC configuration.

Reynolds and Taylor numbers are similar quantities; however, the Taylor number
accounts for differences in the radius ratio.

The onset of turbulent motion in the TC apparatus is a function of the Reynolds
(Taylor) number, the radius ratio, aspect ratio, and even the starting laminar flow
condition. In studies that have investigated the transition to turbulence, a range of
Reynolds numbers has been reported for the onset of turbulent flow. For example,
Andereck et al. (1986) report turbulent flow at Re1 = 2890 (η = 0.908), Smith &
Townsend (1982) report turbulence at Re1 = 7300 (η = 0.667) and Koschmieder (1979)
at Re1 = 1290 (η = 0.727). Hence, it is concluded that there is no unique Reynolds
number for the onset of turbulent flow. However, it can be stated that once the
Reynolds number is of the order of 1000 or more, transition to turbulent flow
generally occurs.

Some of the first studies (Wattendorf 1935; Taylor 1935) of turbulent TV motion
reported measurements (using Pitot tubes) of the azimuthal velocity component, but
they did not account for the TV motion as the results were averaged along the cylinder
axis. Smith & Townsend (1982) used hot-wire anemometers (HWA) to measure azi-
muthal, axial and radial velocity components. They introduced a small axial velocity to
move the vortices past the measuring location and thus isolate the influence of the TV
motion on the velocity output. The resulting measured velocity was phase-averaged to
measure the relative contribution of the TV motion to the velocity fluctuation. It was
shown that the relative contribution of the TV motion to the velocity fluctuation
decreased with increasing Reynolds number. This work, however, relied on the
assumption that the TV motion was completely separated from turbulent motions in
a spectral sense (that is, there were no low-frequency turbulent velocity fluctuations).
The axial variation of the TV motion and velocity fluctuations was not reported.

Wereley & Lueptow (1994) made velocity measurements that directly include and
report the axial dependence of velocity components and hence provide information
on the influence of the TV motion. Azimuthal component velocity profiles, measured
with a laser-Doppler velocimeter, were reported and the TV motion was found to
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have the greatest effect on the mean azimuthal velocity away from the cylinder walls,
where the azimuthal velocity changed significantly in the direction of the cylinder
axis. Radial and axial velocity component measurements made using HWA at varying
axial locations have also been reported (Kobayashi et al. 1990), as have similar meas-
urements using laser-Doppler anemometers (LDA) (Parker & Merati 1996). For both
experiments, the time-averaged velocity and turbulence measurements were found to
change significantly, depending on the axial location relative to the TV. Visual evidence
of the TV motion has been reported at a Reynolds number of 73 000 (Parker & Merati
1996), a magnitude well beyond that typically observed for the initial transition to
turbulence. Based on this, the axial dependence of turbulence statistics cannot be
discounted as an isolated feature for lower-Reynolds-number turbulent TC flow.

Small-scale motion within the TV has been studied using visual techniques at the
outer cylinder, and a motion similar to a Görtler vortex (GV) has been identified
(Barcilon & Brindley 1984). The GV motion is believed to occur as a result of curved
surfaces and it consists of pairs of counter-rotating vortices having their axes oriented
in the streamwise direction. In TC flow, the GV occurs at a length scale much smaller
than the TV, and it is restricted to the near-wall region. Increases of the Reynolds
number in this particular study led to the size of the GV decreasing; however, at
Reynolds numbers where the TV was not visible the GV motion could still be seen.
The authors concluded that turbulent TC flow is composed of two forms of coherent
motion: the TV and the GV.

Our review thus far has been restricted to experimental work. Measurements of
velocity and hence reporting of turbulence statistics in turbulent TC flow have been
restricted in the past because the closed system means that probes can cause significant
interference which feeds back to the incoming flow. The cylindrical shape has made
some visual measurement techniques difficult as a result of refraction. We have used
numerical techniques here as they do not suffer from these limitations.

Turbulent flow contains length scales spanning over several orders of magnitude
and as a result DNS is computationally expensive; however, the technique’s accuracy
makes it ideal for computation of turbulence statistics that otherwise cannot be
measured. Only a small number of DNS studies of turbulent TC flow have been
reported. Yuu & Umekage (1995) ran a simulation for a case with Re1 = 1500,
Γ = 20, and η = 0.88. They produced a DNS that agreed well with the experiments
that they ran in parallel. This work showed the significant cylinder end effects on the
velocity field when in the vicinity of the cylinder ends.

DNS of turbulent flow for a case with the inner and outer cylinders rotating has
been reported (Rudman & Blackburn 1998); the Reynolds number was 3000, based
on the difference in velocity between the two cylinders. Radius ratios of η = 0.875 and
η = 0.667 were tested. The flow state corresponded to featureless turbulence and hence
no considerations of the influence of TV motion were reported. Rudman & Blackburn
presented contour plots of instantaneous velocity and observed a very streaky flow
structure near the inner cylinder and a somewhat less streaky flow structure toward
the outer cylinder. Mean velocity profiles showed that a laminar sublayer existed
(that is, u+ = y+) near the wall (y+ < 10), and away from the wall the profile followed
logarithmic laws.

Turbulent TC flow has been considered extensively with Reynolds-averaged Navier–
Stokes (RANS) turbulence modelling methods because of their reduced computational
expense. A major shortcoming of RANS models is that the turbulence is modelled
rather than directly computed. A selection of previous work is discussed below to
illustrate the versatility of this approach.
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The influence of the radius ratio on the mean TV motion was considered for a
case with a Reynolds number of Re1 = 50 000 (Kobayashi, Matsubara & Maekawa
1999). The k–ε turbulence model was applied. It was found that the vorticity of the
TV motion was greatest for η = 0.7 and that it decreased rapidly for lower values of
η, thus suggesting that both cylinders play an important role in maintaining the TV
motion in turbulent TC flow.

The k–ω turbulence model was used to investigate transitions for higher-Reynolds-
number turbulent TC flow (Batten, Bressloff & Turnock 2002). Radius ratios of
η =0.734, 0.941 and 0.985 were tested for Reynolds numbers ranging from Re1 = 5000
to Re1 = 20 000. The work identified a secondary transition in the turbulent flow state
similar to that observed in experiments (Lathrop, Fineberg & Swinney 1992). Batten
et al. (2002) also found that the secondary transition occurred at lower Reynolds
numbers for increasing gap width. Whilst this work was limited by the applicability
of RANS models, it demonstrated the potential of simulation to extend TC studies
into regions where experimental work cannot economically reach.

RANS turbulence modelling has also been used to investigate end effects for finite-
length cylinders. Wild, Djilali & Vickers (1996) investigated the contribution of the
cylinder ends to the total torque. The cylinder aspect ratio was varied from Γ = 2 to
Γ = 40 and the Reynolds number from Re1 = 3000 to Re1 = 40 000. Several turbulence
models were used and it was found that for smaller aspect ratios, the contribution to
the total torque from the disks at the end of each cylinder represented a substantial
fraction of the total torque. At smaller aspect ratios it was also found that the torque
variation along the cylinder axis was more significant than it was for the larger
aspect ratios. This work was particularly valuable because it allowed a wide range
of parameters to be varied and their effect on a widely used and experimentally
measured quantity to be determined.

A great deal of qualitative and quantitative information is known about turbulent
TC flow. The TV motion persists up to very high Reynolds numbers and few studies
consider the disappearance of the TV motion. Several studies consider measurements
of the mean velocity and turbulent velocity fluctuations at varying locations within the
TV. However, there is relatively little quantitative investigation of turbulence statistics
or visualization of the turbulent flow and discussion of the subsequent influence of
the mean TV motion, and this is a topic for further investigation in this paper.

3. Numerical method
The fluid was assumed to be incompressible and Newtonian. The governing

equations for fluid motion under these assumptions are the continuity equation,

∇ · u = 0, (3.1)

and the Navier–Stokes equation,

∂u
∂t

= −∇p +
1

Re1

∇ · ∇u − ∇ · (uu), (3.2)

where u is the velocity vector and p is the pressure. The equations are normalized
by the gap width between the cylinders (R2 − R1), and the tangential velocity of
the inner cylinder W1. Time is normalized by the characteristic length and velocity
((R2 − R1)/W1), and the pressure term is normalized by the square of the characteristic
velocity and density (ρW 2

1 ). The Reynolds number is defined according to (2.3).
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The equations were discretized in space using a second-order-accurate finite-volume
method (Ferziger & Peric 2002) on a staggered grid (Harlow & Welch 1965). The grid
was based on a cylindrical coordinate system with an inertial reference frame since this
is well-suited to the TC configuration (throughout this paper: x = axial or spanwise
coordinate; u =axial or spanwise velocity; y = radial or wall-normal coordinate;
v = radial or wall-normal velocity; z = azimuthal or streamwise coordinate measured
in radians; and w = azimuthal or streamwise velocity). The grid was uniform in the
axial and azimuthal directions, and refined near each cylinder surface using smooth
transformation functions (Hoffman 1982; Vasilyev 2000). The governing equations
were advanced in time with a second-order Adams–Bashforth method for explicitly ad-
vanced terms and the Crank–Nicolson method for implicitly advanced terms. All terms
in the equations were advanced explicitly in time except for the wall-normal diffusion
terms, which had a detrimental effect on the maximum allowed time step for numerical
stability, and hence these terms were advanced implicitly (Akselvoll & Moin 1996).
Pressure correction in the Navier–Stokes equations was accomplished with a fractional
step method (Dukowicz & Dvinsky 1992; Perot 1993). The Poisson equation for pres-
sure correction was solved using Fourier transforms to decouple the periodic directions
and a tri-diagonal solver was used to invert the resulting matrix (Hockney 1965).

Boundary conditions were periodic in the axial and azimuthal directions and no
slip at the inner and outer cylinders. The tangential velocity was set to a constant
magnitude at the inner cylinder and zero at the outer cylinder.

4. Computation details and verification
4.1. Axial domain length and starting procedure

Figure 1 shows the computational domain and coordinate axes. The axial domain
length of the simulation is defined in terms of the aspect ratio Γ , defined in (2.2). The
aspect ratio can also be defined as the dimensionless TV pair wavelength λ, multiplied
by the number of vortex pairs N , such that Γ = λN . This definition assumes that an
even number of vortex pairs will fit into a given space. For a numerical simulation with
periodic end boundary conditions, this is forced to occur by counter-rotation of the
vortices. In a computation using no-slip end boundary conditions or an experiment,
odd numbers of vortices can result. In practice, these end vortices are usually ignored
when defining the wavelength (Koschmieder 1979).

The wavelength of the vortices in the present work was based on experimental
results (Kataoka, Doi & Komai 1977). A vortex wavelength of λ= 2.29 was used
and the domain was made long enough to accommodate two vortex pairs or four
individual vortices (that is, Γ = 4.58). An axial domain length of Γ = 20 is typical for
experimental work (Parker & Merati 1996) and a similar domain length would have
been required for a computation with no-slip end boundary conditions. This domain
size was computationally impractical for turbulent flow. Periodic boundary conditions
were used in the axial direction to avoid the computational expense that would have
been involved with no-slip boundary conditions. The radius ratio was set to η = 0.617
to correspond to the experimental results on which the vortex wavelength was based
(Kataoka et al. 1977).

The periodic boundary condition requires an a priori specification of the TV
wavelength. The TV wavelength in experiments is influenced by the aspect ratio,
radius ratio and starting procedure (Koschmieder 1979). There was no reason to
expect that a numerical solution would not display similar effects. A set of coarse
grid runs was done to check the influence of the domain length and starting procedure.
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Parametersa,b Possible flow states and achieved flow state (in bold)
Γ, λ N, λ N, λ N, λ

Γ = 2λ, λ= 2.00 2, 2.00∗ 3, 1.33 4, 1.00
Γ = 2λ, λ= 2.29 2, 2.29∗ 3, 1.53 4, 1.15
Γ = 8λ, λ= 2.00 7, 2.29 8, 2.00 9, 1.78∗

Γ = 8λ, λ= 2.29 7, 2.62 8, 2.29 9, 2.04∗

a Grid resolution for coarse grid cases:
�x ≈ 0.042(e.g. Γ = 4.0, Nx = 96), �ymin = 0.005, �ymax = 0.039 (Ny = 48), �z = 0.049 (Nz = 128).
b Simulation parameters, imposed wavelength.
∗ Resulting simulation flow state.

Table 1. TV wavelengths for turbulent TC flow with different domain lengths and vortex
wavelengths for coarse grid tests (all cases based on instantaneous acceleration of the inner
cylinder to the desired Reynolds number).

A coarse grid was used because it was not computationally possible to run the required
number of cases on a fine grid. Details of the finer grid and methods used to gather
statistics are provided in § § 4.2 and 4.4, and coarse grid details are provided in table 1.
Values of the vortex wavelength were set to λ=2.00 or 2.29. Different values of λ
were used in some initial test cases; however, the influence of this on the matters
being investigated was assumed to be secondary.

For the cases reported in table 1, a mean streamwise velocity profile based on
constant angular momentum across the gap between the cylinders was imposed
at the start of the simulation. This has been measured in previous experiments
(Smith & Townsend 1982). Random velocity components were used for the other two
directions, and the streamwise velocity profile was disturbed by random perturbations
to numerically trip a turbulent flow state. The cylinder Reynolds number was set to
the desired value from the beginning of the simulation. This procedure was used for
all simulations unless stated otherwise.

The first test case involved running two domain lengths of 2λ and 8λ (with λ= 2.00
or λ= 2.29). The primary result considered here was the vortex wavelength, which
was identified from visual inspection of the mean velocity field. Generally, the vortex
wavelength was expected to be approximately equal to 2.00 or 2.29, depending on
the value of λ used. This was the case when Γ = 2λ was the computational domain
length, but at larger domain lengths other flow states (as identified by a different
vortex wavelength) were observed to form.

Starting procedure was also investigated. Simulation parameters and results are
summarized in table 2. The results show no sensitivity to starting procedure for the
shorter domain length (that is, Γ = 2), although there is a sensitivity as the domain
length increases (that is, at Γ = 8).

The results of the these test cases show that longer domain length computations
tend to allow different TV wavelengths to form. For the shorter domain lengths,
a consistent flow condition was achieved and the shorter domain was therefore
considered most appropriate for the present work, as the ability to achieve multiple
flow states at the same Reynolds number was not a topic of the present investigation.

4.2. Simulation and post-processing details

As noted in the previous section, computations were started from random
perturbations imposed on a mean velocity profile with constant angular momentum
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Geometric parametersa

L= 2λ, λ= 2.00 L =2λ, λ=2.00 L= 2λ, λ= 2.00 L =8λ, λ=2.00

Starting procedure details

Sudden acceleration to Run until a TV is Increment Re1 to operating Increment Re1 to operating

Re1 = 6000, then run established at Re1 = value, start with random value, start with random

until stationary and 100, then suddenly initial conditions at Re1 = initial conditions at Re1 =

then suddenly accelerate to Re1 = 100, then set Re1 to 100, then set Re1 to

decrease to Re1 = 3200, and then run gradually increasing values: gradually increasing values:

3200 and run until until stationary. Re1 = 400, 800, 1600 and Re1 = 400, 800, 1600 and

stationary. 3200, and run until 3200, and run until

stationary for each case. stationary for each case.

Resulting TV wavelengths

λ= 2.0 (achieved for λ = 2.0 (achieved for λ = 2.0 (achieved for λ = 2.0 (achieved for

present case and present case and also present case and also for present case) and λ = 1.78

also for a sudden for a sudden start at a sudden start at Re1 = (sudden start) at Re1 =

start at Re1 = 3200), Re1 = 3200), see 3200), see table 1. 3200, see table 1.

see table 1. table 1.

a Grid resolution for coarse grid cases:
�x ≈ 0.042 (e.g. Γ = 4.0, Nx = 96), �ymin = 0.005, �ymax = 0.039 (Ny = 48), �z = 0.049(Nz = 128).

Table 2. TV wavelengths for turbulent TC flow, starting procedure investigation with
different domain lengths for coarse grid cases.

Reynolds number: 3200 Grid number: 256 × 128 × 384
Grid spacing:a,b �x+ = 3.66 �y+ = varies from 0.35 to 2.97: R1�z+ = 5.39

Radius ratio: η = 0.617 Aspect ratio: Γ = 2 × 2.29
R1: R1 = 1.611 R2: R2 = 2.611

Vortex wavelength: λ= 2.29 Number of samples: 72
Computational volume: Γ × (R2 − R1) × 2π Time between samples, tm: 10c

Time step size: 0.005

a Grid spacing in wall units based on τyz1
, where τyz1

= (1/Re1)(∂〈w〉/∂y − 〈w〉 solidus R1)1, see § 4.2
for more information.
b Wall units are defined in the text.
c The value of tm was estimated as the time for a large eddy to travel around the inner cylinder,
(2πR1/W1)(W1/(R2 − R1)) = 10.1.

Table 3. Computation details.

and were run until a stationary state was achieved. Other simulation parameters for
the DNS are presented in table 3. Justification for these parameters is discussed in
the following sections.

Statistics (mean velocity and other turbulence statistics) were computed by averag-
ing an instantaneous three-dimensional solution over the azimuthal direction
(averaged quantity denoted by 〈 · 〉z), and in some cases the axial direction as well
(averaged quantity denoted by 〈 · 〉xz). Ensemble averaging was then performed over
several realizations that were separated by a time greater than an estimated integral
time scale of the flow (a spatial and ensemble-averaged quantity is denoted by 〈 · 〉xzt

or 〈 · 〉zt , where t denotes averaging over an ensemble of flow realizations, and the
individual snapshots for ensemble averaging were separated by tm as given in table 3).
Statistics computed from averages in the azimuthal direction and not the axial
direction (that is, 〈 · 〉zt ), are referred to in this paper as having a two-dimensional
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resolution, and statistics computed from averages in the azimuthal and axial directions
are referred to as having a one-dimensional resolution (that is, 〈 · 〉xzt ). The integral
time scale was estimated using the inner cylinder velocity and circumference 2πR1/W1.
In this paper the notation 〈 · 〉 is used interchangeably with 〈 · 〉xzt , and the notation
〈 · 〉z is used interchangeably with 〈 · 〉zt unless stated otherwise.

Velocity fluctuations at a point are defined according to the average in the azimuthal
direction only (u′′ = u − 〈u〉zt , where u′′ is the velocity fluctuation due to turbulence
and u is the instantaneous velocity at a point) or the azimuthal and axial directions
(u′ = u − 〈u〉xzt , where u′ is the velocity fluctuation due to turbulence and the mean
TV motion, referred to here as the velocity fluctuation, and u is the instantaneous
velocity at a point). Special axial and radial coordinates are defined for reporting
results. The axial coordinate x∗ defines the axial location relative to the outflow of the
first selected vortex pair from the inner cylinder (x∗ = 2x/λ(R2 − R1)). The coordinate
r∗ defines a coordinate transform such that the wall-normal coordinate varies from
zero to one (r∗ = (y − R1)/(R2 − R1)). Figure 1 illustrates these coordinate systems.

Wall shear stress is a vector quantity, but for the purposes of this paper only the
shear stress in the azimuthal direction is considered. In terms of non-dimensional
quantities the wall shear stress (normalized by ρW 2

1 ) is,

τyzi
=

1

Re1

(
∂w

∂y
− w

y

)
i

, (4.1)

where the subscript i defines the inner or outer cylinder. Averaging in the axial and
azimuthal direction and over the ensemble of samples was also applied to the wall
shear stress. The same notation as that used for the velocity field averaging was
applied, that is, 〈τyz〉xz defines the instantaneous azimuthal component of shear stress
averaged in the azimuthal and axial directions, and over an ensemble of samples.

Throughout this paper, units normalized by the friction velocity (referred to as wall
units) are defined with a superscript +. A transform is performed such that y+

i =0
corresponds to the wall. The subscript i refers to the cylinder that the coordinate is
relative to and it also defines which wall (inner or outer cylinder) friction velocity is
used to compute y+

i . At the inner cylinder, the transform is (in terms of dimensionless
quantities),

y+
1 = r∗Reτ1

, (4.2)

and at the outer cylinder, the transform is,

y+
2 = (1 − r∗)Reτ2

, (4.3)

where the friction-velocity-based Reynolds-number subscript designates the cylinder
wall that the friction velocity is defined with respect to. That is, Reτi

=Wτi
(R2 − R1)/ν,

where Wτi
/W1 =

√
τyzi

(note that τyzi
is the dimensionless wall shear stress). The wall

shear stress is defined according to (4.1) and in all instances in this paper averaging
in the axial and azimuthal directions as well as over an ensemble of samples was
applied for computation of the mean wall shear stress for defining wall units.

On some occasions when plotting results, the lower horizontal axis of a graph is
used to define the coordinate r∗, whereas the upper horizontal axis is used for the
wall-normal coordinate in wall units. The notation used for the wall units is relative to
both the inner and outer cylinder in the format y+

1 |y+
2 with the first listed coordinate

being relative to the inner cylinder.
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Figure 2. Total kinetic energy variation with time over the whole computational domain.

4.3. Flow state confirmation

Several tests were performed to confirm that a stationary flow state had been achieved.
The first test identified a stationary state by the total (that is, the sum of the energy
in each grid cell over the whole domain) kinetic energy remaining approximately
constant. Figure 2 shows the kinetic energy variation with respect to time. There is
a periodicity with a very long period of about 200 time units. Given that a cylinder
rotation takes around 10 time units, and that the amplitude of the periodicity was
small relative to the mean, this was not considered significant.

The next stationarity test looked at the variation of individual velocity components
using a run test (Bendat & Piersol 1971). The run test was used because it does not
require knowledge of the statistical distribution (e.g. Gaussian or otherwise) of the
random variables in question. A time-based sequence of mean values is computed for
different sample sizes and compared with the mean value of the entire data set. A run
is counted as a sequence of successive mean values less than or greater than the mean
of the entire data set. A confidence level of stationarity (that is, that the data does
not exhibit any underlying trend) is then defined according to the number of runs
rs , and the number of samples Ns . A sample is then declared stationary at a given
confidence level if the number of runs lies with a given range (Bendat & Piersol 1971).
Table 4 summarizes the results for a run test of velocity components based on their
mean square value with the fluctuation based on a purely time-averaged mean. That
is, velocity components were monitored at selected points in the domain continuously
in time and the signal was averaged over a continuous time sample. The results show
that the velocity field is stationary for a 0.95 confidence interval for almost all of the
trials based on the criteria for the number of runs given in notes b to d of table 4.
The few cases that did not exhibit stationarity are not considered significant because
the same velocity component was stationary for different sample sizes.

TC flow has been observed to be periodic and modulating in laminar flow
states, particularly at higher laminar flow Reynolds numbers (Takeda 1999). Tests
were undertaken to ensure that the flow state reached was showing features of
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Velocitya Ns = 10b, Ts = 42.71 Ns = 20c, Ts = 21.25 Ns = 40d, Ts = 10.68

ue
1 rs = 8 11 21

v1 4 4 16
w1 5 11 21
uf

2 5 13 21
v2 3 11 19
w2 7 13 17

a Total run time was 438.85 time units with 8.0 × 104 time steps.
b Requires 2 < rs < 9 for a 0.05 level of significance.
c Requires 6 < rs < 15 for a 0.05 level of significance.
d Requires 14 < rs < 27 for a 0.05 level of significance.
e Location 1 in y was midway between cylinders, x and z locations were arbitrary.
f Location 2 in y was close to the outer cylinder, x and z locations were arbitrary.

Table 4. Stationarity testing of velocity components. Number of runs rs for a run test of
velocity components based on the mean square of the velocity fluctuation over a number of
samples Ns with sample period Ts .

Samples Vortex rs , vortex size rs , vortex position

Ns = 42a 1 20 11
2 16 15
3 20 25
4 20 21

Ns = 72b 1 35 15
2 29 19
3 31 16
4 31 13

a 42 samples requires 14 < rs < 27 for a 0.05 level of significance.
b 72 samples requires 27 < rs < 44 for a 0.05 level of significance.

Table 5. Stationarity testing of the TV motion based on a run test for the TV size and
location. Number of runs rs based on number of samples Ns .

turbulent flow, without any periodic components due to modulation or TV axial
movement.

The first test looked at the stationarity of the TV size and position. The mean
vortex location was determined from the local maxima in 〈v〉z midway between the
cylinders. The instantaneous vortex location was then found by averaging each flow
realization in the azimuthal direction and determining the local maxima of 〈v〉z. The
spatial difference between local maxima indicated the vortex size for a velocity field at
one instant in time. This was then compared with the mean vortex size and position
for the entire set of data. Table 5 summarizes the results and notes a and b give the
criteria for assessment of stationarity with a 0.95 confidence interval. It was found that
the vortex size was stationary, but the vortex location was not stationary when a large
sample size (72 as opposed to 42 samples) was used. That is, the vortices were found
to have a statistical trend to suggest they were moving along the cylinder axis. The
convection velocity of the vortices was calculated and found to be 1.19 × 10−4. Over
the duration of the simulation, this corresponds to the vortices moving 0.086 units in
the axial direction, or about 4 grid nodes. The movement was considered sufficiently
small to not have a major effect on statistics. When the vortex pair wavelength
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Figure 3. Movement of TV motion for a stationary case (- - -, 42 samples) and a
non-stationary case (—, 72 samples). r∗ = 0.50.
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Figure 4. Autocorrelation of the velocity fluctuation, u′′ = u − 〈u〉t , at selected axial locations,
mean velocity averaged in time only (that is, 〈u〉t is the velocity at a point averaged with
respect to time). r∗ =0.50.

was calculated from the results, neglecting vortex movements, it was determined to
be λ= 2.2721 and λ= 2.3079. This is a variation of only ±0.78 % from the imposed
wavelength of λ=2.29. Finally, figure 3 shows the differences in 〈v〉z (midway between
the cylinders) are minor for the stationary and non-stationary sample sizes.

The instantaneous data were also examined for periodic components. Figure 4
shows the autocorrelation for the axial velocity component (that is, u) with respect
to time shift �t at varying axial locations midway between the cylinders. There is a
periodic component present at some axial locations with a period of approximately
5 time units. Visualization shows that the periodicity is probably due to pockets
of positive and negative velocity fluctuations (figure 5). Local effects due to the
periodicity can be neglected since the structure travels around the cylinder and for
this work only the average effect around the cylinder circumference was of interest.

Gorman & Swinney (1982) observed modulation in laminar flow occurring as: a
beating phenomenon, where the TV wavelength changes at every axial location
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Figure 5. Visualization of the instantaneous velocity fluctuation v′′ in the x∗–z plane with
highlighting of an azimuthal structure. (a) t = 0, (b) 10.

simultaneously; a travelling phenomenon, where a wave in the form of local changes
in the TV wavelength moves around the cylinder; and a combination of beating
and travelling. For the present simulation, if modulation is of statistical significance it
should be seen as a non-stationary trend in the velocity components. For each velocity
field collected, a run test for stationarity was performed on the mean square velocity
at axial locations corresponding to x∗ = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and
2.0, and eight equally spaced azimuthal locations were used (64 locations in total).
The radial location was midway between the cylinders. All samples were found to
be stationary according to run test criteria similar to those in tables 4 and 5, thus
confirming that if modulation is present it is not of statistical significance for the
present work.

Another important characteristic of the TV motion to consider was the symmetrical
nature of the vortices within a vortex pair. Inspection of the mean velocity field
(figure 6) shows that the vortices are approximately mirrored about the vortex outflow
at x∗ = 2.0 except for a minor shift.

There are several time scales for turbulent TC flow: the time for a revolution of
the inner cylinder (10.1 time units); the time for a vortex to rotate about its axis; the
time for an azimuthal structure to travel around the inner cylinder; the time for a
vortex pair to travel a distance equal to its wavelength; and the time for the first zero
crossing of the autocorrelation (an integral time scale of the flow, 2.5 time units, from
figure 4). For sampling statistics a separation time of 10 time units was used. This
time scale must be considered in relation to the flow time scales identified above.

The time between samples is much greater than the integral time scale and hence this
is acceptable. A vortex revolution is dependent on the vortex radius (approximately
0.5 length units) and the radial velocity (approximately 0.225 units), and hence the
time for a vortex revolution is 13.96 time units, assuming a circular vortex with
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Figure 6. Comparison of – – –, mirrored profiles of 〈v〉z with —, non-mirrored profiles.
r∗ = 0.50.

constant angular velocity. The time between samples is less than this time scale.
Since the statistics are processed in an Eulerian sense and averaged in the azimuthal
direction, all possible points that a particle travelling around the vortex could occupy
are considered. The azimuthal periodicity has a time scale of around 5.5 time units.
If the data were sampled in phase with this, there is a potential problem as the
data would be phase averaged. However, given that the data are also averaged in
the azimuthal direction, and the periodicity is due to a structure travelling around
the cylinder, the phase of the azimuthal wave is irrelevant with respect to the time
between velocity samples.

The conclusion arising from this discussion is that the flow state is stationary and
has the features of turbulent flow with a mean TV motion and there is an azimuthal
periodicity present. Local effects due to the azimuthal periodicity can be neglected
since the data are averaged in the azimuthal direction. The mean TV motion was
found to be of a constant size, but moving slowly along the cylinder axis. However,
the convection velocity of the mean TV motion was so small that it was assumed to
have only a minimal effect on results. Further evidence of the existence of turbulence
in addition to the TV motion is given in the next section by means of spectra.

4.4. Grid resolution

Grid resolution for the simulations was determined by matching the resolution in wall
units to previous DNS studies of channel or pipe flow that used similar numerical
methods at comparable Reynolds numbers (e.g. Kawamura et al. 1998). Table 6
summarizes the grid resolutions and domain sizes used by others.

One-dimensional energy spectra (based on azimuthal or axial separation) of velocity
fluctuations (based on u′′) were computed to verify adequate grid resolution. The
spectrum was computed at radial locations r∗ = 0.039 (near the inner cylinder),
r∗ = 0.5 (midway between the cylinders), and r∗ =0.958 (near the outer cylinder).
Axial locations at x∗ = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 were used
for cases based on azimuthal separation.
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Authors Discretization, case Streamwise Wall-normal Spanwise
(min, max)

Present Second order, TV flow 5.39, 8.74 0.35, 2.97 3.66
Loulou et al. (1997) Spectral, pipe flow 9.9 0.39, 5.7 7.5
Eggels et al. (1994) Second order, pipe flow 7.03 0.94, 1.88 0.05, 8.84
Moser & Moin (1987) Spectral, curved channel flow 17.7 0.054, 4.4 5.9
Kawamura et al. (1998) Second order, channel flow 9.0 0.4, 11.5 4.5

Table 6. Grid resolution (in wall units) used in previous DNS studies of channel and pipe
flow.

Spectra based on azimuthal separation are shown in figure 7. At r∗ =0.039, the
spectrum shows approximately seven orders of magnitude of decay, indicating that the
grid resolution is sufficient to provide most of the energy dissipation. Some build-up
of energy is observed for the higher wavenumbers, indicating that the grid could have
been finer near the inner cylinder. Build-up of the spectrum is not always observed
with DNS using second-order accurate discretization (Tafti 1996; Kravchenko & Moin
1997). In the present case, the grid is fine enough to minimize numerical error and allow
some energy build-up to occur. In a DNS of turbulent pipe flow, Loulou et al. (1997)
observed some energy build-up at high wavenumbers, but concluded that the overall
consequence was not significant owing to the large overall decay of energy. Build-up
of energy at high wavenumbers has been observed in other DNS studies (Moser &
Moin 1987). All the statistics from these studies showed good agreement of first- and
second-order statistics with experiment. As table 6 outlines, the current grid resolution
is comparable to, or better than, previous second-order accurate DNS studies. The
energy build-up is less noticeable at r∗ = 0.5 and r∗ =0.958 as shown in figures 8 and 9,
respectively. This is because the smallest length scales increase in size toward the outer
cylinder. Evidence of this is seen in the lower value of friction-velocity-based Reynolds
number toward the outer cylinder (table 7). The shape of the spectra in figures 7, 8
and 9 are generally similar to those found in turbulent shear flows, thus providing
further evidence of turbulent velocity fluctuations in addition to the TV motion.

There is a small peak in the spectra at some axial locations. It occurs at a frequency
of k/2πr =0.5, which corresponds to a length of 1.05 radians in the azimuthal
direction. This is comparable to the spacing of structures identified in figure 5.

The energy spectra for the axial separation are shown in figure 10. The behaviour
of the spectra is similar to that observed for azimuthal separation, although much
less pronounced in terms of the energy build-up at r∗ = 0.039. There is a large decay
of energy at all radial locations.

It was not possible to run a finer grid simulation (than the resolution given in
table 3) because of computational limitations, and a coarse grid simulation was
run instead. The coarse grid had 96 nodes in the axial direction, 48 nodes in the
radial direction and 128 nodes in the azimuthal direction. In comparison, the grid
for the present DNS had 256, 128 and 384 nodes in the axial, radial and azimuthal
directions, respectively. Figure 11 shows spectra based on azimuthal separation for the
two grids. Only a radial location midway between the cylinders was considered and
only the axial velocity component was investigated. There is good agreement between
the spectra for the large scales with the coarser grid giving slightly higher energy
levels but a steeper rate of decay because of numerical dissipation. A comparison
of velocity fluctuation levels at different grid resolutions is also made (figure 12).
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Figure 7. One-dimensional energy spectra of the velocity fluctuation based on azimuthal
separation at r∗ = 0.039. E is the energy, fz(k) is the frequency in direction z at wavenumber
k, and Lz is the dimensionless domain length.

Generally, the agreement is poor near the inner cylinder where the length scales are
smallest. The coarse grid tends to predict larger velocity fluctuation levels because of
poor dissipation resolution. Toward the outer cylinder the agreement is improved.

4.5. Comparison with experimental data

The simulation was validated by comparison with available and applicable experi-
mental results. Although there are many published experimental data related to
turbulent TC flow, these data are spread over a range of Reynolds numbers and
cylinder radius ratios that are impractical to reach using DNS. As a result, comparison
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Figure 8. One-dimensional energy spectra of the velocity fluctuation based on azimuthal
separation at r∗ =0.5. E is the energy, fz(k) is the frequency in direction z at wavenumber k,
and Lz is the dimensionless domain length.

was made with available quantities that were based on experiments at similar, though
not necessarily identical, Reynolds number and radius ratio.

Laminar flow simulations to predict the onset of laminar TV flow were undertaken
as a validation test case. The theoretical critical Reynolds number (for the onset of
laminar TV flow) at a radius ratio of η = 0.617 is Re1 = 72.7 (DiPrima & Swinney
1981). In the simulations, a TV motion could be produced for a Reynolds number
of 73.0, but it could not be produced at a Reynolds number of 72.8. This represents
a variation from theory of 0.42%, and it was concluded that this verification was
successful.
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Figure 9. One-dimensional energy spectra of the velocity fluctuation based on azimuthal
separation at r∗ = 0.958. E is the energy, fz(k) is the frequency in direction z at wavenumber
k, and Lz is the dimensionless domain length.

Integral flow parameters from the turbulent flow simulation are given in table 7.
The total torque at the inner cylinder is also given, along with the torque based on an
experimental correlation (Wendt 1933). The present work under-predicts the torque
by around 8 %. This is probably because the extra torque due to the finite cylinder
length (Wild et al. 1996) has not been accounted for in the DNS.

The mean velocity based on the one-dimensional resolution (as defined in § 4.2) is
compared with experimental results (Smith & Townsend 1982) in figure 13. Despite
the differences in the Reynolds number (for the experiment Re1 ≈ 50 000) and the
radius ratio (for the experiment η =0.66), the results show similar behaviour. There
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Figure 10. One-dimensional energy spectra of the velocity fluctuation based on axial
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Re1 Rea
1c

Re∗
1 Ta1 Ta2

3200 72.7 44 9.7 × 106 2521

Reb,c,d
τ1

Reb,c
τ2

G∗d
1 G∗d,e

1expt
Cf

f

196.5 121.3 6.279 × 105 6.822 × 105 0.754 × 10−2

a Critical Reynolds number for onset of laminar TV flow.
b 〈τyzi

〉 = (1/Re1)(∂〈w〉i/∂y − 〈w〉i/y)|y=Ri
.

c Wτi
/Wi =

√
τyzi

.
d G∗

1 = (Reτ1
(η/(1 − η))2)2π, dimensionless torque at inner cylinder.

e Based on correlation from Wendt (1933).
f Cf = 2(W 2

τ1
/W 2

1 ).

Table 7. TC flow integral parameters.

are two distinct near-wall regions at each cylinder where there is a steep velocity
gradient (0 < r∗ � 0.1, 0.9 � r∗ < 1) due to the shear introduced at each cylinder wall.
In the region midway between the cylinders (0.1 � r∗ � 0.9), the magnitude of the
velocity from DNS is less than in the experiment. The experiment also shows a
slightly steeper near-wall velocity gradient due to the higher Reynolds number.

Mean velocity in a two-dimensional resolution is compared with experiment
(Kobayashi et al. 1990) in figures 14, 15 and 16. The experiment was performed
at a radius ratio of 0.92 and a Reynolds number of approximately 60 000. This is
significantly different to the present DNS and it is a reasonable explanation for the
differences observed. The trends are similar and the results show a weaker TV motion
in the experiment owing to the higher Reynolds number. Unfortunately, there is
no study as yet that provides the necessary information to perform scaling between
different TC flow configurations in turbulent flow.

An additional component for validation, although not the topic of this paper,
focused on passive scalar transport in turbulent TC flow. Scalar transport experiments
(Kataoka et al. 1977) were used to guide the choice of radius ratio and Reynolds
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Figure 11. One-dimensional energy spectra of the velocity fluctuation based on azimuthal
separation at r∗ = 0.5 for comparison of —, the present DNS and - - -, coarse grid simulations.
E is the energy, fz(k) is the frequency in direction z at wavenumbers k, and Lz is the
dimensionless domain length.

number, and results from the experiment were used for validation of the present
DNS. The governing equation for scalar transport is the conservation of species,

∂c

∂t
+ ∇ · (uc) =

1

ScRe1

∇ · (∇c), (4.4)

where c is the scalar concentration normalized by the difference between the inner
and outer cylinder concentration, Sc= ν/α is the Schmidt number, and α is the scalar
diffusivity. The normalization and numerical method described in § 3 was used for
the scalar equation. Boundary conditions were a fixed concentration of 1 at the inner
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Figure 13. Mean velocity, one-dimensional resolution, comparison with experiment.
—, DNS; �, Smith & Townsend (1982).

cylinder and 0 at the outer cylinder. Schmidt numbers of 0.71 and 5.0 were considered.
The quantity for comparison with experiment was the Sherwood number,

Sh =
2k(R2 − R1)

α
, (4.5)
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Figure 14. Mean velocity 〈u〉z, two-dimensional resolution, comparison with experiment. —,
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where,

k =
α(dc/dy)wall

(c1 − c2)
. (4.6)

Figure 17 shows the comparison with experiment (Sherwood number at the outer
cylinder). Given that the experiment was done at a Schmidt number in the order
of 3000 (too large to reach with DNS), the agreement between the experiment and
DNS is very good. There is an improvement in the agreement for increasing Schmidt
number. Additional results and discussion of the physical significance of results from
the scalar transport studies are reported elsewhere (Bilson & Bremhorst 2003, 2004;
Bilson 2004).
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5. Results
5.1. Mean velocity field

Figures 14, 15 and 16 show the magnitudes of each mean velocity component in the
radial and axial directions. Figure 18 shows stream traces based on the radial and
axial velocity components representing the mean TV motion. The stream trace shows
that two vortex pairs exist, with each pair having a wavelength of approximately
λ= 2 when normalized by the vortex wavelength set at the start of the simulation.
Additional, but smaller vortex pairs are present at the vortex inflow and outflow
regions (inflows at x∗ = 1.0 and x∗ = 3.0 for the outer cylinder, and outflows at
x∗ =2.0 and x∗ = 4.0 for the inner cylinder, inflow and outflow refer to locations
where the TV motion is toward or away from the inner cylinder). The primary vortex
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Figure 16. Mean velocity 〈w〉z, two-dimensional resolution, comparison with experiment.
Key as for figure 15.

pairs are expected as a result of the TV motion. The secondary vortex pairs have been
previously identified based on Sherwood number (mass transfer rate) variations at the
outer cylinder (Kataoka et al. 1977). They are formed as a result of shear between the
two vortex pairs in the region where the primary vortex motion is away from either
the inner cylinder or the outer cylinder. The secondary vortices appear to be similar to
the GV motion identified experimentally in Barcilon & Brindley (1984). The primary
and secondary vortex pairs give rise to variations of the mean shear stress along the
axial direction of each cylinder surface, as shown in figure 19. This variation can also
be linked to the mass transfer variation shown in figure 17 (Bilson & Bremhorst 2003).

A final mean velocity behaviour of interest is the near-wall velocity. Figure 20
shows the velocity near each cylinder wall in wall units. It is seen that the laminar
sublayer region (that is, 〈w〉+ = y+) is maintained only very close to the wall (y+ ≈ 2).
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Figure 18. Stream traces from (a) the mean TV motion and (b) secondary vortex pairs.

5.2. Fluctuating velocity statistics

Fluctuating velocities, as defined in § 4.2, are interpreted in terms of contributions
from the mean TV motion and turbulence. Fluctuations due to turbulence and
the mean motion are based on the u′

i velocity (that is, at a point u′
i = ui − 〈u〉),

whereas fluctuations due to turbulence alone are computed with the mean TV motion
removed (that is, at a point u′′

i = ui −〈u〉zt ). This interpretation of velocity fluctuations
consisting of turbulence and a mean TV motion is consistent with previous work
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(Smith & Townsend 1982). The two fluctuations are related according to,

〈〈ui〉z〈uj 〉z〉 + 〈u′′
i u

′′
j 〉 = 〈u′

iu
′
j 〉 + 〈ui〉〈uj 〉. (5.1)

The fluctuations due to the mean TV motion and the turbulence are shown in
figure 21. The total energy of the velocity fluctuations due to the mean TV motion
and turbulence has two maxima (figure 21), one near the inner cylinder (r∗ ≈ 0.1)
and one near the outer cylinder (r∗ ≈ 0.9). The magnitude of the fluctuation due to
turbulence alone is lower than the fluctuation that includes turbulence and the mean
TV motion, and there are no longer near-wall maxima in the profiles across the gap
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between the cylinders. It is clear that the TV motion makes a significant contribution
to the velocity fluctuation.

A better understanding of the contribution of the TV motion can be achieved by
considering the fluctuations for each individual velocity component. Axial velocity
fluctuations due to turbulence (u′′, figure 22) remain approximately constant for the
cylinder gap width (0.1 � r∗ � 0.9). The inclusion of the mean TV motion into the
velocity fluctuation (u′) shows a comparatively large contribution, especially near
each wall where the axial velocity component is greatest as a result of the mean TV
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Figure 24. Fluctuating velocity for w′ and w′′, wall units based on 〈τyz1
〉.

motion. The wall-normal fluctuations due to the turbulence and mean TV motion (v′,
figure 23) are greatest midway between the cylinders, with the TV motion contributing
about two-thirds of the velocity fluctuation at r∗ ≈ 0.5. The turbulent component (v′′)
remains approximately constant across the cylinder gap width, with the exception
of the near-wall regions. Streamwise velocity fluctuations, due to the turbulence and
mean TV motion (w′, figure 24), peak near the cylinder walls. Figures 21 to 24 also
show that while the TV motion contribution is significant, it does not completely
dominate the fluctuating velocity field.
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Near the walls, the contribution of the TV component to the fluctuations is
greatest, whilst toward the centre of the gap width the TV component makes a
relatively small contribution. The fluctuating velocity components all display similar
behaviour and magnitudes away from the cylinder walls. The mean TV motion makes
a large contribution to the velocity fluctuation and it is also observed near the inner
and outer cylinders that w′ ≈ u′ � v′, as observed in figures 25 and 26. This result
is slightly different to plane boundary-layer flows such as pipe or channel flows
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—, present work; – · –, R2
1/y

2.

where typically w′ � u′ � v′. Similar behaviour is observed near each cylinder for the
turbulent fluctuation where u′′ ≈ w′′ and u′′ ≈ w′′ � v′′.

The maxima for the turbulent velocity fluctuations (in wall units) for streamwise,
wall-normal and spanwise components are 1.0, 0.9 and 0.75, respectively, which is
equivalent to a ratio of 1.33 : 1.2 : 1. In comparison with plane boundary layer flow,
the ratio is 1.33 : 0.66 : 1 (Wilcox 1993). This indicates an enhanced wall-normal
velocity fluctuation, which can be attributed to the mean TV motion increasing the
production of these velocity fluctuations.

Figure 27 shows the shear stress variation between the cylinders. There is a
theoretical balance between the shear stress due to velocity fluctuations (that is,
Reynolds shear stress terms) and viscous effects,

y

Reτ1

∂(〈w〉+/y)

∂y
− 〈v′w′〉+ =

R2
1

y2
. (5.2)

Figure 27 shows that the total shear stress variation across the cylinder gap width
is in almost perfect agreement with the theoretical behaviour given in (5.2). There is
a significant contribution to the shear stress by the mean TV motion and turbulent
velocity fluctuations (that is, 〈v′w′〉) away from the cylinder walls. A large portion
of this is due to the mean TV motion, as can be seen from the smaller magnitude
of turbulent velocity fluctuations alone. This shows that the mean TV motion is
responsible for much of the momentum transport from the inner to the outer cylinder.

The velocity fluctuations due to turbulence alone are shown in figures 28 to 30.
In figure 28, there is clearly a non-uniform behaviour in u′′ in the axial direction
that is closely tied to the mean TV motion, as evidenced by the periodic nature of
the fluctuations. At the vortex outflows (that is, TV motion is away from the inner
cylinder) the fluctuation in u′′ is greatest because of the higher shear and convection
due to the mean TV motion in these regions. Similar trends are also observed for v′′

(figure 29). At vortex inflows (that is, mean TV motion is toward the inner cylinder)



Direct numerical simulation of turbulent Taylor–Couette flow 257

r*

x*

0 1

1

2

1.2
1.0
0.8
0.6
0.4
0.2
0

(�u′′2�+)0.5

Figure 28. Fluctuating velocity u′′, two-dimensional resolution, wall units based on 〈τyz1
〉.

r*

x*

10

1

2

1.2
1.0
0.8
0.6
0.4
0.2
0

(�v′′2�+)0.5

Figure 29. Fluctuating velocity v′′, two-dimensional resolution, wall units based on 〈τyz1
〉.

r*

x*

10

1

2

2.0
1.7
1.3
1.0
6.7
3.3
0

(�w′′2�+)0.5

Figure 30. Fluctuating velocity w′′, two-dimensional resolution, wall units based on 〈τyz1
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the fluctuation has a local minimum relative to other axial locations near the walls
due to convection and turbulent transport of higher fluctuation fluid to regions away
from the vortex outflows and inflows. Fluctuations of w′′ show a region of large
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w′′ at the vortex outflows, however, this is not observed across the entire gap width
(figure 30).

5.3. Reynolds stress budgets

Budgets of the Reynolds stress, due to the mean TV motion and turbulence (that is, the
velocity fluctuation as defined by u′

i = ui − 〈ui〉) are reported in this section. The aim
is to investigate how velocity fluctuations are produced, dissipated and transported
across the gap between the cylinders. The equations describing the budgets include
the budget for 〈w′w′〉,

0 = − 2〈v′w′〉∂〈w〉
∂y

(Pww)

− 2

y
〈v′w′〉 (Cww)

−
{

1

y
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the budget for 〈v′v′〉,
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(5.4)
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and the budget for 〈v′w′〉,
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(5.6)

where Pij is the production term, Cij the convection or bulk velocity gradient
production term, Tij the turbulence transport, PDij the pressure diffusion, PSij the
pressure strain, Dij the molecular diffusion, and εij the dissipation. The subscript
ij refers to the velocity components that the term represents. The budgets here are
interpreted in the same manner as previously documented for turbulent shear flows.

Addition of the three velocity fluctuation component transport equations according
to the definition of kinetic energy (k = 0.5(〈u′2〉 + 〈v′2〉 + 〈w′2〉)) leads to the budget for
the total fluctuation (figure 31). The peak of production (Pk) has a maximum near each
wall and a small but constant value away from the walls. Near the inner cylinder, the
peak is at y+

1 ≈ 8, which is comparable to a boundary-layer flow where the peak is at
y+ ≈ 10. However, at the outer cylinder, the peak is at y+

2 ≈ 5. Production in turbulent
TC flow is due to interaction of the mean streamwise velocity gradient and Reynolds
shear stress (see (5.3)). The velocity gradient is responsible for the peak in production
near the inner cylinder. Across the cylinder gap width, the production approaches a
small but constant value because a velocity gradient remains. There are bulk velocity
gradient effects (that is, production due to terms of the form 〈u′

iu
′
j 〉〈ui〉/y) that are

included in the interpretation of the production term and hence make a positive
contribution (see, for example, Pvv in (5.4)). Local equilibrium (production equal to
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Figure 31. Total velocity fluctuation budget, wall units based on 〈τyz1
〉.

dissipation) is achieved in the regions away from the cylinder walls (0.2 � r∗ � 0.9).
Equations (5.3) and (5.4) have a number of terms which are equal and opposite,
namely Cww = −Cvv and the second terms of Tww and Dww have equal and opposite
counterparts in Tvv and Dvv . These terms are indicative of direct energy interchange,
or redistribution, by turbulent and molecular diffusion between the w′ and v′ velocity
fluctuations.

For near-wall regions (0 < r∗ � 0.2 and 0.9 � r∗ < 1), dissipation (εk) approaches
its maximum value (acting as a loss) as the wall is approached. Very close to
the wall, dissipation is balanced by viscous diffusion (Dk). The viscous diffusion
transport mechanism brings high-velocity fluctuation fluid close to the walls (that is,
in the region r∗ � 0.05 and r∗ � 0.95). In regions slightly further away from the walls
(0.05 � r∗ � 0.1 and 0.9 � r∗ � 0.95), the viscous diffusion acts to move high-velocity
fluctuations away from the region owing to the high rate of change of gradients
associated with production, and hence it represents a loss.

Turbulent transport (Tk) terms also play a role in the budget. Near the inner cylinder
(0 <r∗ � 0.15), the turbulent transport acts as a loss to move velocity fluctuations
away. This is due to the high gradients associated with production of velocity
fluctuations in this region coupled with the TV motion away from the inner cylinder.
Near the outer cylinder, turbulent transport also acts as a loss, moving fluctuations
away from the region 0.85 � r∗ � 0.95. Closer to the wall, turbulent transport then
acts to deliver a gain in fluctuations to the outer cylinder.

Since products of pressure and strain rate represent redistribution of energy amongst
components of velocity fluctuations, only PDvv represents a loss or gain of energy
from the flow. Consequently, the pressure (PDk) terms in turbulent TC flow act as a
gain near the inner cylinder (the PSk terms are zero as a result of continuity). This is
due to the high-pressure region pushing higher velocity fluctuation fluid closer to the
wall. For 0.15 � r∗ � 0.9, the pressure terms and turbulent transport approximately
mirror each other, alternatively acting as gains and losses. This can be interpreted
as turbulence causing a local acceleration and deceleration of the fluid, leading to
local changes in the pressure field, which subsequently resists changes in the velocity
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Figure 33. Reynolds stress budget, 〈v′v′〉+ wall units based on 〈τyz1
〉.

(Bradshaw 1971, Chapter 2 and Appendix 1). The balance term Bk reflects any
imbalance due to numerical effects and it is noted that it is negligibly small.

Production of the velocity fluctuation is seen to be dominated by the production
of 〈w′w′〉, which is due to the interaction of the Reynolds shear stress with the mean
velocity gradient (figure 32). There is also a loss in the 〈w′w′〉 budget due to the bulk
velocity gradient (Cww), however, this term re-appears as a gain in the 〈v′v′〉 budget,
equation (5.4) and figure 33 (Cvv), thus representing an interchange of energy between
v′ and w′. Other terms in the budget show similar behaviour to their analogous terms
in the total fluctuation budget (refer to figure 31), with the exception of pressure and
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Figure 34. Reynolds stress budget, 〈u′u′〉+ wall units based on 〈τyz1
〉.

dissipation. Dissipation has a slight change in the slope of the profile at r∗ ≈ 0.05.
Pressure terms are negative but small, indicating that pressure is still responsible
for the volume deformation mechanism of transferring velocity fluctuations to other
components, as it is in plane channel or pipe flow (Bradshaw 1971), but to a lesser
extent. Most of the production of velocity fluctuations in the streamwise direction
is balanced by dissipation; however, some additional transport mechanisms act to
produce velocity fluctuations in the other two velocity components.

Velocity fluctuation gain terms for the wall-normal velocity fluctuation are due to
interaction of the bulk velocity gradient (〈w〉/y) and Reynolds stress (represented
by Pvv and Cvv in (5.4) and in figure 33). Additional gains and losses are due to
the pressure terms (PDvv , PSvv). The pressure terms are a significant component of
this budget. The pressure terms tend to act as losses near each cylinder (0 <r∗ � 0.3
and 0.6 � r∗ < 1). Near the outer cylinder, pressure terms are approximately balanced
by turbulent transport (Tvv), indicating a situation where the turbulent transport
causes volume deformation and generates an associated pressure field to oppose
velocity fluctuations. The dissipation (εvv) is generally small for 〈v′v′〉, and it becomes
negligibly small near the walls thus indicating that the effect of v′ is to redistribute
fluctuating velocity components. Viscous diffusion (Dvv) is also relatively small in this
region. This is due to the physical influence of the cylinder wall. The combination of
the no-slip condition and continuity results in a zero gradient of wall normal velocity
at the wall (∂v′/∂y = 0) and also a small value of v′.

The u velocity is in a coordinate direction for TC flow that is analogous to the
spanwise direction in a plane boundary layer flow (that is, plane channel, pipe or
boundary layer). As in plane boundary-layer flows, there are no net production
terms for the 〈u′u′〉 budget (5.5). However, this is not necessarily the case for TC
flow as the vortices do create shear and hence turbulence, but the axial average which
includes the effect of turbulence as well as the mean TV motion removes the evidence
of this effect in the results. The major source of 〈u′u′〉 is from the pressure term
(PSuu) through the u′ fluctuation (figure 34). The pressure term PDvv peaks near the
inner cylinder at y+

1 ≈ 5 and near the outer cylinder at y+
2 ≈ 5. These locations are
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Figure 35. Reynolds stress budget, 〈v′w′〉+ wall units based on 〈τyz1
〉.

slightly nearer to the wall compared to those locations observed for the total velocity
fluctuation in figure 31. Pressure gain terms occur because of elongation in the axial
direction (that is, a shear effect of the TV motion) of the fluid element by local changes
in pressure that occur owing to streamwise velocity fluctuations. For the 〈v′v′〉 budget,
the pressure terms had an approximately equal value to those of the 〈u′u′〉 budget
(that is, the PSvv term in (5.4)), although in areas where PSuu was positive, PSvv

tended to be negative owing to continuity, and vice versa when PSuu was negative.
The consideration of continuity leads to the conclusion that azimuthal and wall
normal velocity fluctuations are largely responsible for generation of axial velocity
fluctuations. It is likely that this mechanism would be dominated by the TV motion.
Diffusion and dissipation balance at the walls. The diffusion is positive at the walls
owing to the large near-wall value of 〈u′u′〉. Turbulent transport acts to redistribute
fluctuations away from either wall, an indication that wall normal fluctuations move
axial velocity fluctuations away from regions of large axial velocity fluctuation.

The budget of the Reynolds stress 〈v′w′〉 is dominated by production (Pvw),
bulk gradient production (Cvw), and pressure terms (PSvw , PDvw) (figure 35). Other
terms due to dissipation, viscous diffusion and turbulent transport are non-zero, but
substantially smaller in magnitude. Production is due to the local mean velocity
gradient as well as the bulk gradient, represented by 〈w〉/y, and its interaction with
〈w′w′〉 resulting from cylinder rotation. Bulk velocity gradient terms actually have a
loss effect midway between the cylinders (0.2 � r∗ � 0.8) and this is attributable to the
TV motion (that is, large values of 〈v〉z in this region). Pressure terms act as losses in
this budget, resisting the production mechanisms discussed above.

The Reynolds stress budgets for the turbulent TC flow have shown that pressure
plays a more complex and different role in the budget compared with its role for plane
boundary layer type flows (that is, boundary layer, channel or pipe flow). There is still
pressure transfer from the streamwise velocity fluctuation, but it is small compared
with other terms. In the wall normal velocity fluctuation budget, dissipation is minimal
and pressure terms act to transfer some of the velocity fluctuations. Production of
velocity fluctuations occurs through a mean field interaction effect (identified as Cvv)
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Figure 36. Visualization of velocity fluctuations in the x∗–z∗ plane at y+
1 = 3.46.

as well as a result of the local gradient of mean velocity. Pressure terms are seen to
be the main source of spanwise velocity fluctuations.

5.4. Visualization of the instantaneous velocity field

Instantaneous velocity fields are examined in this section using flow visualization. A
wide variety of visual work exists for TC flow; however, much of this work focuses on
the TV flow state and it is generally restricted to the surface of the outer cylinder or a
single azimuthal plane. With DNS, several different viewing angles and viewing planes
can be applied simultaneously, thus making it a very powerful visualization tool.

Figure 36 shows velocity fluctuations in u′′, v′′ and w′′ at y+
1 = 3.46 (that is, close to

the inner cylinder). Streaks of positive and negative velocity fluctuations are observed,
but unlike plane boundary layer flow (that is, flat plate, pipe or channel flows), the
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Figure 37. Visualization of velocity fluctuations in the x∗–z∗ plane at y+
2 = 3.87.

streaks occur in all three velocity components and are limited to an axial location
where the vortex motion is away from the inner cylinder. The structure and magnitude
of the turbulent velocity fluctuations are clearly influenced by the TV motion, with
the largest fluctuation concentrated at the vortex outflows. The location of the streaks
can be linked to the near-wall secondary vortex structures observed for the mean
velocity field (figure 18).

Near the outer cylinder at y+
2 = 3.87, a streaky structure could not be detected;

however, the TV motion is still having an influence as evidenced by the banded
structure (figure 37). The apparent lack of a streaky structure is consistent with the
very weak vortex structures observed near the outer cylinder in figure 18. A banded
structure is also observed at y+

1 = 98 (midway between the cylinders) (figure 38).
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Figure 38. Visualization of velocity fluctuations in the x∗–z∗ plane at y+
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Very broad bands are observed in v′′ and w′′ at the TV boundaries. The u′′ velocity
component shows less evidence of this structure.

In the x∗–r∗ plane, the relationship between the instantaneous streamwise velocity
field and velocity fluctuations in the plane is of interest. Figure 39 shows vectors of u′

and v′ on contours of the instantaneous streamwise velocity, and also vectors of u′′ and
v′′ on contours of the instantaneous streamwise velocity. When the TV component
is retained (that is, the fluctuations are viewed as u′ and v′), there is a similarity
between the changes in the streamwise velocity contour and the velocity components
perpendicular to the streamwise direction. However, unlike flow in a boundary-layer,
channel or pipe, there is no direct visual correlation between the turbulent velocity
fluctuations (u′′ and v′′) and the streamwise velocity. This gives insight into the
mechanism of instantaneous momentum transfer between the two cylinders. The TV
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motion takes a large portion of high-momentum fluid from the inner cylinder at
x∗ ≈ 2 and it brings low-momentum fluid in at x∗ ≈ 1. There is a noticeable thickening
and thinning of the boundary layer on the inner cylinder associated with this process
as well as the existence of a stagnation point near x∗ = 1 at the inner cylinder.

6. Conclusion
DNS of turbulent TC flow has been carried out for a Reynolds number of 3200 in

a device with a radius ratio of 0.617. Results from the simulation have been compared
with available experimental data with good agreement of trends. A comprehensive
verification exercise was undertaken to ensure the flow state achieved was repeatable
and corresponded to the features of turbulent TC flow.

Inspection of the mean velocity field identified a mean motion consisting of TV
pairs and secondary vortex pairs confined to the near-wall region at locations where
the mean TV motion was directed away from either cylinder. The secondary vortices
are seen to cause significant change in the mean wall shear stress, particularly at
the vortex inflows and outflows from either cylinder. The mean TV motion was
found to make a significant contribution to the velocity fluctuations when results
were averaged in the axial direction and the TV motion was included as part of
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the velocity fluctuation. This indicated that a large proportion of the momentum
transport between the cylinders was localized owing to the mean TV motion. This
was confirmed by investigation of the mean and Reynolds shear stress terms over the
cylinder gap width.

Reynolds stress budgets, based on the turbulent and TV velocity fluctuations
are reported. One of the more significant results to come from this effort was
the confirmation that the role of pressure is more complex for turbulent TC flow
when compared with plane boundary-layer flow (that is, pipe or channel flow).
The pressure terms are usually responsible for a transfer of streamwise velocity
fluctuations to the transverse directions. This is still observed, however, in turbulent
TC flow, the transfer of streamwise velocity fluctuations is a result of convective
(bulk velocity gradient effect) and pressure effects. There is still pressure transfer
from the streamwise velocity fluctuation, but it is small compared with other terms.
In the wall-normal velocity fluctuation budget, dissipation is minimal and pressure
terms actually act to transfer some of the velocity fluctuations. Production of velocity
fluctuations occurs through a mean field interaction effect (identified as Cvv) rather
than as a result of the local gradient of mean velocity. Pressure terms are seen to be
the main source of spanwise velocity fluctuations.

Finally, visualization of the turbulent velocity fluctuations was performed. The
visualization revealed a streaky structure near the inner cylinder. The structure was
confined to locations where the mean TV motion was away from the inner cylinder.
Near the outer cylinder, the streaky structure could not be identified; however, the ve-
locity fluctuations still had a banded structure of low- and high-magnitude fluctuation
as a result of the mean TV motion. Visualization in a plane perpendicular to the mean
flow direction revealed that there was a good correlation between the instantaneous
velocity fluctuations and the streamwise velocity magnitude, but only when the velocity
fluctuations included fluctuations due to turbulence and the mean TV motion, thus
indicating the significant role of the mean TV motion in momentum transport.

Computer time for this work was provided by an Australian Partnership for Ad-
vanced Computing grant and the Queensland Parallel and Supercomputing Founda-
tion. M. Bilson was supported by an Australian Postgraduate Award Scholarship.
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